
Exploring the Memory Access Regularity in Pointer-
Intensive Application Programs

Keqiang Wu, Resit Sendag, and David Lilja

Department of Electrical and Computer Engineering, University of Minnesota
200 Union Street S.E., Minneapolis, MN 55455, USA

{kqwu, rsgt, lilja}@ece.umn.edu

Abstract. Pointer-intensive and sparse numerical computations typically
display irregular memory access behavior. This work presents a mathematical
model, called the Self-tuning Adaptive Predictor (SAP), to characterize the
behavior of load instructions in procedures with pointer-based data structures
by using procedure call boundaries as the fundamental sampling frequency.
This model incorporates information about the history of specific load
instructions (temporal locality) and their neighboring loads (spatial locality)
using a least-squares minimization approach. Simulation results on twelve of
the most time-consuming procedures with pointer-based data structures from
five of the SPEC2000 integer benchmark programs show that these pointer-
based data structures surprisingly demonstrate regular memory access patterns
and the prediction error at steady-state is within [-6%, +6%] on average.

1 Introduction

An important characteristic of Pointer-Based Data Structures (PDS) is that they are
dynamically allocated and managed with heap allocation. Heap allocation parcels
out blocks of contiguous memory as requested by the program at run-time. Memory
blocks are deallocated explicitly or via process termination in any order. For
example, elements in a linked data structure contain explicit fields that name all
adjacent elements by address. This mode of connectivity allows the easy
construction and manipulation of data structures of arbitrary shape, such as trees and
graphs. Dynamic construction allows PDS to grow arbitrarily large. However, this
flexibility makes it challenging to characterize the memory access behavior of these
structures. Their behavior was traditionally classified as irregular or arbitrary [1-2].

The intuitive way for prediction is to track the memory allocation/deallocation
behavior by analyzing the program execution path. The cache miss behavior for two
specified data structures, i.e. linked list and binary tree, was analyzed by tracking the
memory allocation/deallocation sequence in synthetic programs [3]. However, in
large and real programs, interactions and branch patterns are difficult to predict.
These add complexity in extending their analysis.

In this paper, we avoid the detailed analysis on program execution path and use a
mathematical model to extract the path pattern based on the observed paths. The
primary contributions of this paper are:

2 Keqiang Wu, Resit Sendag, and David Lilja

1. The regularity of memory access patterns for procedures with pointer-based data
structures is observed using procedure call boundaries as the sampling unit.

2. A mathematical model, Self-tuning Adaptive Predictor (SAP), is proposed that
correlates both temporal and spatial locality with the program counter (PC), and
optimizes predictions of future memory addresses referenced by the program using
a least-squares minimization technique [4].

2 Model Formulation

Consider a general example of the procedure call sequence in Figure 1. The memory
access behavior of main() is complex as it jumps to different locations when different
procedures are called. Its overall behavior depends on the behavior of all
procedures.

1. Leaf procedure: a procedure that does not call other procedures.
2. PC-correlated spatial locality: the data address referenced by a load instruction

at a PC likely depends on memory addresses referenced by loads at nearby PCs.
3. PC-correlated temporal locality: the next memory address referenced by a load

instruction at a certain PC is likely to depend on the previous memory addresses
referenced by the same load instruction.

Fig. 1. Schematic of the calling procedure of a simple program.

This paper focuses on the memory access behavior produced by load instructions
in leaf procedures using the procedure call as the fundamental sampling unit. The
primary assumption is that, within some certain period, the behavior of memory
accesses in a procedure depends on the history of both itself and nearby loads. This
behavior can be represented as a linear system with constant but unknown parameters.
At some point, the behavior changes which causes a consequent change in the specific
parameter values. The goal of SAP is to detect such changes and automatically
converge on the estimated parameter values (Figure 2).

Consider the leaf procedure C in Figure 1. Suppose that there are r loads within
procedure C with program counter (PC) values p1, p2, �, pr, respectively. Within
the ith call of the procedure, the corresponding referenced addresses are denoted as
Ai,1, Ai,2, �, Ai,r. Within a certain range of consecutive calls, the behavior of
memory accesses can be represented with the following equation, which takes PC-
correlated temporal and spatial localities into account:

∑∑∑
=

−
=

−
=

− +++=
lk

i
linli

k

i
ini

j

i
minmimn AaAaAaA

0
,,

0
1,1,

1
,,, ...

1 (1)

where 1≤j≤(n-1), 0≤ki≤(n-1) (i=1,2,�,l), 0≤l≤(m-1), and 1≤m≤r.

 main ()
{

�
A();
�
exit(0);

}

Proc A ()
{

�
B();
�
return;

}

Proc B ()
{

�
C();
�
return;

}

Proc C ()
{
computation
�
�
return;

}

1 2 3

456

main ()
{

�
A();
�
exit(0);

}

Proc A ()
{

�
B();
�
return;

}

Proc B ()
{

�
C();
�
return;

}

Proc C ()
{
computation
�
�
return;

}

1 2 3

456

Exploring the Memory Access Regularity in Pointer-Intensive Application Programs 3

Without loss of generality, we consider the l=1 case in this paper. The prediction
of a target load�s address is based on the history of itself and one other nearby load.
By letting ai=ai,m , bi=ai,1 , y(n)=An,m, and u(n)=An,1 , Equation (1) can be simplified to
the following memory access function:

)(...)()(...)1()(knubnubjnyanyany k0j1 −+++−++−= (2)

Fig. 2. Block diagram representation of the Self-tuning Adaptive Predictor (SAP).

3 Results and Discussion

The addresses actually accessed by load instructions are collected by modifying the
SimpleScalar simulator [5]. Here, we use benchmark 181.mcf with test input set for
illustration. 181.mcf exhibits the poorest data cache behavior among all benchmarks
of the SPEC CINT2000 Benchmarks suite. Profiling results using gprof show that the
bea_compute_red_cost procedure constitutes more than 6.7% of the total running
time of this benchmark program. Our simulation results show the total number of
misses in this procedure constitutes 9.15% of the total misses in the program. The
related code and data structures are schematically shown in Figure 3.

typedef long cost_t; cost_t bea_compute_red_cost (arc_t *arc)

(a) {
typedef struct arc; return arc->cost � arc->tail->potential + arc->head->potential
{ }

node_t *tail, *head; (d)
� bea_compute_red_cost:

}arc_t; �
(b) lw $3,0($4) #PC=0x406500; load arc->tail

typedef struct node lw $5,4($4) #PC=0x406508; load arc->head
{ lw $2,16($4) #PC=0x406510; load arc->cost

� lw $3,44($3) #PC=0x406518; load arc->tail->potential
cost_t potential; lw $4,44($5) #PC=0x406520; load arc->head->potential
� �

}node_t; .end bea_compute_red_cost
(c) (e)

Fig. 3. Related C and assembly code of the procedure bea_compute_red_cost from 181.mcf.

The five PCs (pi) (see Figure 3e) are defined as follows and the corresponding
access addresses are denoted as A1, A2, A3, A4, and A5, respectively. Figures 3 (b),
(c) and (e) show that the address relationship among arc->cost, arc->tail, and arc-

input Memory Access
Behavior

+yu

Tuning
Algori thm

y�

-

error

Self-Tuning Adaptive
Predictor

Behavior
Model

input Memory Access
Behavior

+yu

Tuning
Algori thm

y�

-

error

Self-Tuning Adaptive
Predictor

Behavior
Model

4 Keqiang Wu, Resit Sendag, and David Lilja

>head is determined at compile-time, but the correlation between arc->tail-
>potential and arc->head->potential are not known until arc-> tail and arc->head
have been dereferenced at run-time. The memory addresses accessed by p4 and p5
depend on values stored in registers $3 and $5 respectively, and no correlation can be
found from the code. As prediction among A1, A2, and A3 is trivial, our study focuses
on A2, A4 and A5. The prediction error is normalized based on the referenced address
span of the same load instruction. Figures 4 and 5 show that these two loads display
different access patterns at different call ranges. We have sampled several different
call ranges and observed similar patterns.

p1=0x406500; p2=0x406508; p3=0x406510; p4=0x406518; p5=0x406520.

Fig. 4. Memory access pattern for PC4.

Fig. 5. Memory access pattern for PC5.

Empirical study [6] shows that the regular memory access consists of different

patterns at different call ranges and different models can be effective during different
phases of the memory access patterns. In this study, multiple versions of the SAP
models run concurrently. Selection of a particular model with which to make a
prediction is automated by observing the convergence rate of each component model.

Three models with different history depths of the target and reference loads are
used as shown in Table 1. Figure 6 show that using A2 as the reference, SAP gives
good prediction in 55% of total execution time for that procedure. Using A4 as the
reference, Figure 7 shows that the steady state error is within the ranges of [-5%,
+5%]. We summarize the performance of the prediction in Table 2. The results
show that using a reference load that has behavior similar to the target load is better
for predicting the behavior of the target than naively selecting a reference load based
on simple dependence relationships. The detailed discussion can be found in [6].

Table 1. History depths of the three models used in prediction.

History Depth Model 1 Model 2 Model 3
Target load 1 3 5

Reference load 2 4 6

4 Conclusions

This paper has proposed a Self-tuning Adaptive Predictor (SAP) model and examined
the memory access patterns of leaf procedures with pointer-based data structures.

Exploring the Memory Access Regularity in Pointer-Intensive Application Programs 5

By taking the procedure as the fundamental sampling unit, SAP incorporates temporal
locality and spatial locality to dynamically adapt to the changing behavior of memory
accesses. Our evaluations with a subset of the SPEC2000 integer benchmark
programs showed that SAP is an accurate model for memory address prediction.

Fig. 6. prediction of A5 using A2.

Fig. 7. Prediction of A5 using A4.

Table 2. Prediction performance of the procedures at steady state

Benchmark Procedure Error Benchmark Procedure Error
pqdown_heap [-3%, 3%] alloc_linked_f_pointer [-4%, 4%] 164.gzip
gen_bitlen [-11%, 11%]

175.vpr
net_cost [-2%, 2%]

bea_compute_red_cost [-5%, 5%] chkgetchunk [-8%, 8%]
bea_is_dual_infeasible [-4%, 4%]

255.vortex
memgetword [-6%, 6%]

compute_red_cost [-6%, 6%] spec_getc [-2%, 2%]

181.mcf

sort_basket [-14%, 14%]
256.bzip2

spec_putc [-2%, 2%]

Acknowledgments

This work was supported in part by National Science Foundation grants EIA-9971666
and CCR-9900605, IBM Corporation, Compaq�s Alpha development group, and the
Minnesota Supercomputing Institute

References

1. Chilimbi, T. M., Larus, J. R.: Using generational garbage collection to implement cache-
conscious data placement. In Proceedings of the First International Symposium on Memory
Management, volume 34(3) of ACM SIGPLAN Notices, October 1998

2. Ding, C, Kennedy, K.: Improving cache performance in dynamic applications through data
and computation reorganization at run time. In Proceedings of the SIGPLAN '99 Conference
on Programming Language Design and Implementation, Atlanta, GA, May 1999

3. Zhang, H., Martonosi, M.: A Mathematical Cache Miss Analysis for Pointer Data
Structures. SIAM Conference on Parallel Processing for Scientific Computing, March, 2001

4. Draper, N. R., Smith, H.: Applied Regression Analysis. 2nd Ed.., John Wiley & Sons, 1981
5. Burger, D. C., Austin, T. M., Bennett, S.: Evaluating future Microprocessors: The

SimpleScalar Tool Set. Technical Report CS-TR-96-1308, University of Wisconsin-
Madison, July 1996

6. Wu, K., Sendag, R., Lilja, D. J.: Using a Self-tuning Adaptive Predictor to Characterize
the Regularity of Memory Accesses in Pointer-Intensive Application Programs.
University of Minnesota Technical Report: ARCTiC 2003

